Differentiable architecture search has gradually become the mainstream research topic in the field of Neural Architecture Search (NAS) for its capability to improve efficiency compared with the early NAS (EA-based, RL-based) methods. Recent differentiable NAS also aims at further improving search efficiency, reducing the GPU-memory consumption, and addressing the "depth gap" issue. However, these methods are no longer capable of tackling the non-differentiable objectives, let alone multi-objectives, e.g., performance, robustness, efficiency, and other metrics. We propose an end-to-end architecture search framework towards non-differentiable objectives, TND-NAS, with the merits of the high efficiency in differentiable NAS framework and the compatibility among non-differentiable metrics in Multi-objective NAS (MNAS). Under differentiable NAS framework, with the continuous relaxation of the search space, TND-NAS has the architecture parameters ($\alpha$) been optimized in discrete space, while resorting to the search policy of progressively shrinking the supernetwork by $\alpha$. Our representative experiment takes two objectives (Parameters, Accuracy) as an example, we achieve a series of high-performance compact architectures on CIFAR10 (1.09M/3.3%, 2.4M/2.95%, 9.57M/2.54%) and CIFAR100 (2.46M/18.3%, 5.46/16.73%, 12.88/15.20%) datasets. Favorably, under real-world scenarios (resource-constrained, platform-specialized), the Pareto-optimal solutions can be conveniently reached by TND-NAS.