Current backscatter channel estimators employ an inefficient silent pilot transmission protocol, where tags alternate between silent and active states. To enhance performance, we propose a novel approach where tags remain active simultaneously throughout the entire training phase. This enables a one-shot estimation of both the direct and cascaded channels and accommodates various backscatter network configurations. We derive the conditions for optimal pilot sequences and also establish that the minimum variance unbiased (MVU) estimator attains the Cramer-Rao lower bound. Next, we propose new pilot designs to avoid pilot contamination. We then present several linear estimation methods, including least square (LS), scaled LS, and linear minimum mean square error (MMSE), to evaluate the performance of our proposed scheme. We also derive the analytical MMSE estimator using our proposed pilot designs. Furthermore, we adapt our method for cellular-based passive Internet-of-Things (IoT) networks with multiple tags and cellular users. Extensive numerical results and simulations are provided to validate the effectiveness of our approach. Notably, at least 10 dBm and 12 dBm power savings compared to the prior art are achieved when estimating the direct and cascaded channels. These findings underscore the practical benefits and superiority of our proposed technique.