The orthogonal delay-Doppler (DD) division multiplexing (ODDM) modulation has recently been proposed as a promising solution for ensuring reliable communications in high mobility scenarios. In this work, we investigate the time-frequency (TF) localization characteristics of the DD plane orthogonal pulse (DDOP), which is the prototype pulse of ODDM modulation. The TF localization characteristics examine how concentrated or spread out the energy of a pulse is in the joint TF domain. We first derive the TF localization metric, TF area (TFA), for the DDOP. Based on this result, we provide insights into the energy spread of the DDOP in the joint TF domain. Then, we delve into the potential advantages of the DDOP due to its energy spread, particularly in terms of leveraging both time and frequency diversities, and enabling high-resolution sensing. Furthermore, we determine the TFA for the recently proposed generalized design of the DDOP. Finally, we validate our analysis based on numerical results and show that the energy spread for the generalized design of the DDOP in the joint TF domain exhibits a step-wise increase as the duration of sub-pulses increases.