This paper quantifies the impact of adverse environmental conditions on the detection of fiducial markers (i.e., artificial landmarks) by color cameras mounted on rotorcraft. We restrict our attention to square markers with a black-and-white pattern of grid cells that can be nested to allow detection at multiple scales. These markers have the potential to enhance the reliability of precision takeoff and landing at vertiports by flying vehicles in urban settings. Prior work has shown, in particular, that these markers can be detected with high precision (i.e., few false positives) and high recall (i.e., few false negatives). However, most of this prior work has been based on image sequences collected indoors with hand-held cameras. Our work is based on image sequences collected outdoors with cameras mounted on a quadrotor during semi-autonomous takeoff and landing operations under adverse environmental conditions that include variations in temperature, illumination, wind speed, humidity, visibility, and precipitation. In addition to precision and recall, performance measures include continuity, availability, robustness, resiliency, and coverage volume. We release both our dataset and the code we used for analysis to the public as open source.