Modern deep neural networks have been observed to exhibit a simple structure in their final layer features and weights, commonly referred to as neural collapse. This phenomenon has also been noted in layers beyond the final one, an extension known as deep neural collapse. Recent findings indicate that such a structure is generally not optimal in the deep unconstrained feature model, an approximation of an expressive network. This is attributed to a low-rank bias induced by regularization, which favors solutions with lower-rank than those typically associated with deep neural collapse. In this work, we extend these observations to the cross-entropy loss and analyze how the low-rank bias influences various solutions. Additionally, we explore how this bias induces specific structures in the singular values of the weights at global optima. Furthermore, we examine the loss surface of these models and provide evidence that the frequent observation of deep neural collapse in practice, despite its suboptimality, may result from its higher degeneracy on the loss surface.