We present our contribution to the IWPT 2021 shared task on parsing into enhanced Universal Dependencies. Our main system component is a hybrid tree-graph parser that integrates (a) predictions of spanning trees for the enhanced graphs with (b) additional graph edges not present in the spanning trees. We also adopt a finetuning strategy where we first train a language-generic parser on the concatenation of data from all available languages, and then, in a second step, finetune on each individual language separately. Additionally, we develop our own complete set of pre-processing modules relevant to the shared task, including tokenization, sentence segmentation, and multiword token expansion, based on pre-trained XLM-R models and our own pre-training of character-level language models. Our submission reaches a macro-average ELAS of 89.24 on the test set. It ranks top among all teams, with a margin of more than 2 absolute ELAS over the next best-performing submission, and best score on 16 out of 17 languages.