Neural radiance fields (NeRF) has gained significant attention for its exceptional visual effects. However, most existing NeRF methods reconstruct 3D scenes from RGB images captured by visible light cameras. In practical scenarios like darkness, low light, or bad weather, visible light cameras become ineffective. Therefore, we propose TeX-NeRF, a 3D reconstruction method using only infrared images, which introduces the object material emissivity as a priori, preprocesses the infrared images using Pseudo-TeX vision, and maps the temperatures (T), emissivities (e), and textures (X) of the scene into the saturation (S), hue (H), and value (V) channels of the HSV color space, respectively. Novel view synthesis using the processed images has yielded excellent results. Additionally, we introduce 3D-TeX Datasets, the first dataset comprising infrared images and their corresponding Pseudo-TeX vision images. Experiments demonstrate that our method not only matches the quality of scene reconstruction achieved with high-quality RGB images but also provides accurate temperature estimations for objects in the scene.