The performance of machine learning models tends to suffer when the distributions of the training and test data differ. Domain Adaptation is the process of closing the distribution gap between datasets. In this paper, we show that existing Domain Adaptation methods can be formulated as Graph Embedding methods in which the domain labels of samples coming from the source and target domains are incorporated into the structure of the intrinsic and penalty graphs used for the embedding. To this end, we define the underlying intrinsic and penalty graphs for three state-of-the-art supervised domain adaptation methods. In addition, we propose the Domain Adaptation via Graph Embedding (DAGE) method as a general solution for supervised Domain Adaptation, that can be combined with various graph structures for encoding pair-wise relationships between source and target domain data. Moreover, we highlight some generalisation and reproducibility issues related to the experimental setup commonly used to evaluate the performance of Domain Adaptation methods. We propose a new evaluation setup for more accurately assessing and comparing different supervised DA methods, and report experiments on the standard benchmark datasets Office31 and MNIST-USPS.