This paper introduces a novel K-means clustering algorithm, an advancement on the conventional Big-means methodology. The proposed method efficiently integrates parallel processing, stochastic sampling, and competitive optimization to create a scalable variant designed for big data applications. It addresses scalability and computation time challenges typically faced with traditional techniques. The algorithm adjusts sample sizes dynamically for each worker during execution, optimizing performance. Data from these sample sizes are continually analyzed, facilitating the identification of the most efficient configuration. By incorporating a competitive element among workers using different sample sizes, efficiency within the Big-means algorithm is further stimulated. In essence, the algorithm balances computational time and clustering quality by employing a stochastic, competitive sampling strategy in a parallel computing setting.