3D reconstruction of high-resolution target remains a challenge task due to the large memory required from the large input image size. Recently developed learning based algorithms provide promising reconstruction performance than traditional ones, however, they generally require more memory than the traditional algorithms and facing scalability issue. In this paper, we developed a generic approach, sub-image recapture (SIR), to split large image into smaller sub-images and process them individually. As a result of this framework, the existing 3D reconstruction algorithms can be implemented based on sub-image recapture with significantly reduced memory and substantially improved scalability