We consider the problem of symmetrising a neural network along a group homomorphism: given a homomorphism $\varphi : H \to G$, we would like a procedure that converts $H$-equivariant neural networks into $G$-equivariant ones. We formulate this in terms of Markov categories, which allows us to consider neural networks whose outputs may be stochastic, but with measure-theoretic details abstracted away. We obtain a flexible, compositional, and generic framework for symmetrisation that relies on minimal assumptions about the structure of the group and the underlying neural network architecture. Our approach recovers existing methods for deterministic symmetrisation as special cases, and extends directly to provide a novel methodology for stochastic symmetrisation also. Beyond this, we believe our findings also demonstrate the utility of Markov categories for addressing problems in machine learning in a conceptual yet mathematically rigorous way.