Recent digital advances have popularized predictive maintenance (PMx), offering enhanced efficiency, automation, accuracy, cost savings, and independence in maintenance. Yet, it continues to face numerous limitations such as poor explainability, sample inefficiency of data-driven methods, complexity of physics-based methods, and limited generalizability and scalability of knowledge-based methods. This paper proposes leveraging Digital Twins (DTs) to address these challenges and enable automated PMx adoption at larger scales. While we argue that DTs have this transformative potential, they have not yet reached the level of maturity needed to bridge these gaps in a standardized way. Without a standard definition for such evolution, this transformation lacks a solid foundation upon which to base its development. This paper provides a requirement-based roadmap supporting standardized PMx automation using DT technologies. A systematic approach comprising two primary stages is presented. First, we methodically identify the Informational Requirements (IRs) and Functional Requirements (FRs) for PMx, which serve as a foundation from which any unified framework must emerge. Our approach to defining and using IRs and FRs to form the backbone of any PMx DT is supported by the track record of IRs and FRs being successfully used as blueprints in other areas, such as for product development within the software industry. Second, we conduct a thorough literature review spanning fields to determine the ways in which these IRs and FRs are currently being used within DTs, enabling us to point to the specific areas where further research is warranted to support the progress and maturation of requirement-based PMx DTs.