Partial differential equations, and their chaotic solutions, are pervasive in the modelling of complex systems in engineering, science, and beyond. Data-driven methods can find solutions to partial differential equations with a divide-and-conquer strategy: The solution is sought in a latent space, on which the temporal dynamics are inferred (``latent-space'' approach). This is achieved by, first, compressing the data with an autoencoder, and, second, inferring the temporal dynamics with recurrent neural networks. The overarching goal of this paper is to show that a latent-space approach can not only infer the solution of a chaotic partial differential equation, but it can also predict the stability properties of the physical system. First, we employ the convolutional autoencoder echo state network (CAE-ESN) on the chaotic Kuramoto-Sivashinsky equation for various chaotic regimes. We show that the CAE-ESN (i) finds a low-dimensional latent-space representation of the observations and (ii) accurately infers the Lyapunov exponents and covariant Lyapunov vectors (CLVs) in this low-dimensional manifold for different attractors. Second, we extend the CAE-ESN to a turbulent flow, comparing the Lyapunov spectrum to estimates obtained from Jacobian-free methods. A latent-space approach based on the CAE-ESN effectively produces a latent space that preserves the key properties of the chaotic system, such as Lyapunov exponents and CLVs, thus retaining the geometric structure of the attractor. The latent-space approach based on the CAE-ESN is a reduced-order model that accurately predicts the dynamics of the chaotic system, or, alternatively, it can be used to infer stability properties of chaotic systems from data.