Spiking Neural Networks (SNNs) offer a promising solution to achieve ultra low-power/energy computation for solving machine learning tasks. Currently, most of the SNN architectures are derived from Artificial Neural Networks whose neurons' architectures and operations are different from SNNs, or developed without considering memory budgets from the underlying processing hardware. These limitations hinder the SNNs from reaching their full potential in accuracy and efficiency. Towards this, we propose SpikeNAS, a novel memory-aware neural architecture search (NAS) framework for SNNs that can quickly find an appropriate SNN architecture with high accuracy under the given memory budgets. To do this, our SpikeNAS employs several key steps: analyzing the impacts of network operations on the accuracy, enhancing the network architecture to improve the learning quality, and developing a fast memory-aware search algorithm. The experimental results show that our SpikeNAS improves the searching time and maintains high accuracy as compared to state-of-the-art while meeting the given memory budgets (e.g., 4.4x faster search with 1.3% accuracy improvement for CIFAR100, using an Nvidia RTX 6000 Ada GPU machine), thereby quickly providing the appropriate SNN architecture for memory-constrained SNN-based systems.