Graph Neural Networks have gained huge interest in the past few years. These powerful algorithms expanded deep learning models to non-Euclidean space and were able to achieve state of art performance in various applications including recommender systems and social networks. However, this performance is based on static graph structures assumption which limits the Graph Neural Networks performance when the data varies with time. Temporal Graph Neural Networks are extension of Graph Neural Networks that takes the time factor into account. Recently, various Temporal Graph Neural Network algorithms were proposed and achieved superior performance compared to other deep learning algorithms in several time dependent applications. This survey discusses interesting topics related to Spatio temporal Graph Neural Networks, including algorithms, application, and open challenges.