Exposure to crime and violence can harm individuals' quality of life and the economic growth of communities. In light of the rapid development in machine learning, there is a rise in the need to explore automated solutions to prevent crimes. With the increasing availability of both fine-grained urban and public service data, there is a recent surge in fusing such cross-domain information to facilitate crime prediction. By capturing the information about social structure, environment, and crime trends, existing machine learning predictive models have explored the dynamic crime patterns from different views. However, these approaches mostly convert such multi-source knowledge into implicit and latent representations (e.g., learned embeddings of districts), making it still a challenge to investigate the impacts of explicit factors for the occurrences of crimes behind the scenes. In this paper, we present a Spatial-Temporal Metapath guided Explainable Crime prediction (STMEC) framework to capture dynamic patterns of crime behaviours and explicitly characterize how the environmental and social factors mutually interact to produce the forecasts. Extensive experiments show the superiority of STMEC compared with other advanced spatiotemporal models, especially in predicting felonies (e.g., robberies and assaults with dangerous weapons).