Recent successes in the Machine Learning community have led to a steep increase in the number of papers submitted to conferences. This increase made more prominent some of the issues that affect the current review process used by these conferences. The review process has several issues that may undermine the nature of scientific research, which is of being fully objective, apolitical, unbiased and free of misconduct (such as plagiarism, cheating, improper influence, and other improprieties). In this work, we study the problem of reviewers' recruitment, infringements of the double-blind process, fraudulent behaviors, biases in numerical ratings, and the appendix phenomenon (i.e., the fact that it is becoming more common to publish results in the appendix section of a paper). For each of these problems, we provide a short description and possible solutions. The goal of this work is to raise awareness in the Machine Learning community regarding these issues.