The proposed approach is to formalise the probabilistic puzzle in equational FOL. Two formalisations are needed: one theory for all models of the given puzzle, and a second theory for the favorable models. Then Mace4 - that computes all the interpretation models of a FOL theory - is called twice. First, it is asked to compute all the possible models M p .Second, the additional constraint is added, and Mace4 computes only favourabile models M f. Finally, the definition of probability is applied: the number of favorable models is divided by the number of possible models. The proposed approach equips students from the logic tribe to find the correct solution for puzzles from the probabilitistic tribe, by using their favourite instruments: modelling and formalisation. I have exemplified here five probabilistic puzzles and how they can be solved by translating the min FOL and then find the corresponding interpretation models. Mace4 was the tool of choice here. Ongoing work is investigating the limits of this method on various collections of probabilistic puzzles