In this work we present the first application of software-defined optoelectronics (SDO) for bidimensional optoacoustic tomography (OAT). The SDO concept refers to optoelectronic systems where the functionality associated with the conditioning and processing of optical and electrical signals are digitally implemented and controlled by software. This paradigm takes advantage of the flexibility of software-defined hardware platforms to develop adaptive instrumentation systems. We implement an OAT system based on a heterodyne interferometer in a Mach-Zehnder configuration and a commercial software-defined radio platform (SDR). Here the SDR serves as a function generator and oscilloscope at the same time providing perfect carrier synchronization between its transmitter and receiver in a coherent baseband modulator scheme. Therefore, the carrier synchronization enables us to have a much better phase recovery. We study the performance of the OAT SDO system by means of different bidimensional phantoms and the analysis of the reconstructed images.