Quite a few studies on real-world applications of multi-objective optimization reported that their Pareto sets and Pareto fronts form a topological simplex. Such a class of problems was recently named the simple problems, and their Pareto set and Pareto front were observed to have a gluing structure similar to the faces of a simplex. This paper gives a theoretical justification for that observation by proving the gluing structure of the Pareto sets/fronts of subproblems of a simple problem. The simplicity of standard benchmark problems is studied.