Autonomous spacecraft control via Shielded Deep Reinforcement Learning (SDRL) has become a rapidly growing research area. However, the construction of shields and the definition of tasking remains informal, resulting in policies with no guarantees on safety and ambiguous goals for the RL agent. In this paper, we first explore the use of formal languages, namely Linear Temporal Logic (LTL), to formalize spacecraft tasks and safety requirements. We then define a manner in which to construct a reward function from a co-safe LTL specification automatically for effective training in SDRL framework. We also investigate methods for constructing a shield from a safe LTL specification for spacecraft applications and propose three designs that provide probabilistic guarantees. We show how these shields interact with different policies and the flexibility of the reward structure through several experiments.