Elasmobranchs (sharks and rays) can be important components of marine ecosystems but are experiencing global population declines. Effective monitoring of these populations is essential to their protection. Baited Remote Underwater Video Stations (BRUVS) have been a key tool for monitoring, but require time-consuming manual analysis. To address these challenges, we developed SharkTrack, an AI-enhanced BRUVS analysis software. SharkTrack uses Convolutional Neural Networks and Multi-Object Tracking to detect and track elasmobranchs and provides an annotation pipeline to manually classify elasmobranch species and compute MaxN, the standard metric of relative abundance. We tested SharkTrack on BRUVS footage from locations unseen by the model during training. SharkTrack computed MaxN with 89% accuracy over 207 hours of footage. The semi-automatic SharkTrack pipeline required two minutes of manual classification per hour of video, a 97% reduction of manual BRUVS analysis time compared to traditional methods, estimated conservatively at one hour per hour of video. Furthermore, we demonstrate SharkTrack application across diverse marine ecosystems and elasmobranch species, an advancement compared to previous models, which were limited to specific species or locations. SharkTrack applications extend beyond BRUVS analysis, facilitating rapid annotation of unlabeled videos, aiding the development of further models to classify elasmobranch species. We provide public access to the software and an unprecedentedly diverse dataset, facilitating future research in an important area of marine conservation.