This work introduces the Supervised Expectation-Maximization Framework (SEMF), a versatile and model-agnostic framework that generates prediction intervals for datasets with complete or missing data. SEMF extends the Expectation-Maximization (EM) algorithm, traditionally used in unsupervised learning, to a supervised context, enabling it to extract latent representations for uncertainty estimation. The framework demonstrates robustness through extensive empirical evaluation across 11 tabular datasets, achieving$\unicode{x2013}$in some cases$\unicode{x2013}$narrower normalized prediction intervals and higher coverage than traditional quantile regression methods. Furthermore, SEMF integrates seamlessly with existing machine learning algorithms, such as gradient-boosted trees and neural networks, exemplifying its usefulness for real-world applications. The experimental results highlight SEMF's potential to advance state-of-the-art techniques in uncertainty quantification.