In this paper, we explore strategies to detect and evaluate counterfactual sentences. Since causal insight is an inherent characteristic of a counterfactual, is it possible to use this information in order to locate antecedent and consequent fragments in counterfactual statements? We thus propose to compare and evaluate models to correctly identify and chunk counterfactual sentences. In our experiments, we attempt to answer the following questions: First, can a learned model discern counterfactual statements reasonably well? Second, is it possible to clearly identify antecedent and consequent parts of counterfactual sentences?