This paper presents a Segmented Trajectory Optimization (STO) method for autonomous parking, which refines an initial trajectory into a dynamically feasible and collision-free one using an iterative SQP-based approach. STO maintains the maneuver strategy of the high-level global planner while allowing curvature discontinuities at switching points to improve maneuver efficiency. To ensure safety, a convex corridor is constructed via GJK-accelerated ellipse shrinking and expansion, serving as safety constraints in each iteration. Numerical simulations in perpendicular and reverse-angled parking scenarios demonstrate that STO enhances maneuver efficiency while ensuring safety. Moreover, computational performance confirms its practicality for real-world applications.