Wildlife camera traps and crowd-sourced image material provide novel possibilities to monitor endangered animal species. However, massive image volumes that these methods produce are overwhelming for researchers to go through manually which calls for automatic systems to perform the analysis. The analysis task that has gained the most attention is the re-identification of individuals, as it allows, for example, to study animal migration or to estimate the population size. The Saimaa ringed seal (Pusa hispida saimensis) is an endangered subspecies only found in the Lake Saimaa, Finland, and is one of the few existing freshwater seal species. Ringed seals have permanent pelage patterns that are unique to each individual which can be used for the identification of individuals. Large variation in poses further exacerbated by the deformable nature of seals together with varying appearance and low contrast between the ring pattern and the rest of the pelage makes the Saimaa ringed seal re-identification task very challenging, providing a good benchmark to evaluate state-of-the-art re-identification methods. Therefore, we make our Saimaa ringed seal image (SealID) dataset (N=57) publicly available for research purposes. In this paper, the dataset is described, the evaluation protocol for re-identification methods is proposed, and the results for two baseline methods HotSpotter and NORPPA are provided. The SealID dataset has been made publicly available.