Medical image segmentation is a crucial task that relies on the ability to accurately identify and isolate regions of interest in images. Thereby, generative approaches allow to capture the statistical properties of segmentation masks that are dependent on the respective medical images. In this work we propose a conditional score-based generative modeling framework that leverages the signed distance function to represent an implicit and smoother distribution of segmentation masks. The score function of the conditional distribution of segmentation masks is learned in a conditional denoising process, which can be effectively used to generate accurate segmentation masks. Moreover, uncertainty maps can be generated, which can aid in further analysis and thus enhance the predictive robustness. We qualitatively and quantitatively illustrate competitive performance of the proposed method on a public nuclei and gland segmentation data set, highlighting its potential utility in medical image segmentation applications.