https://suzanne-stathatos.github.io/SAVeD Code page: https://github.com/suzanne-stathatos/SAVeD
Foundation models excel at vision tasks in natural images but fail in low signal-to-noise ratio (SNR) videos, such as underwater sonar, ultrasound, and microscopy. We introduce Spatiotemporal Augmentations and denoising in Video for Downstream Tasks (SAVeD), a self-supervised method that denoises low-SNR sensor videos and is trained using only the raw noisy data. By leveraging differences in foreground and background motion, SAVeD enhances object visibility using an encoder-decoder with a temporal bottleneck. Our approach improves classification, detection, tracking, and counting, outperforming state-of-the-art video denoising methods with lower resource requirements. Project page: