We introduce a new mean-field ODE and corresponding interacting particle systems for sampling from an unnormalized target density or Bayesian posterior. The interacting particle systems are gradient-free, available in closed form, and only require the ability to sample from the reference density and compute the (unnormalized) target-to-reference density ratio. The mean-field ODE is obtained by solving a Poisson equation for a velocity field that transports samples along the geometric mixture of the two densities, which is the path of a particular Fisher-Rao gradient flow. We employ a reproducing kernel Hilbert space ansatz for the velocity field, which makes the Poisson equation tractable and enables us to discretize the resulting mean-field ODE over finite samples, as a simple interacting particle system. The mean-field ODE can be additionally be derived from a discrete-time perspective as the limit of successive linearizations of the Monge-Amp\`ere equations within a framework known as sample-driven optimal transport. We demonstrate empirically that our interacting particle systems can produce high-quality samples from distributions with varying characteristics.