Large language models (LLMs) have demonstrated immense utility across various industries. However, as LLMs advance, the risk of harmful outputs increases due to incorrect or malicious instruction prompts. While current methods effectively address jailbreak risks, they share common limitations: 1) Judging harmful responses from the prefill-level lacks utilization of the model's decoding outputs, leading to relatively lower effectiveness and robustness. 2) Rejecting potentially harmful responses based on a single evaluation can significantly impair the model's helpfulness.This paper examines the LLMs' capability to recognize harmful outputs, revealing and quantifying their proficiency in assessing the danger of previous tokens. Motivated by pilot experiment results, we design a robust defense mechanism at the decoding level. Our novel decoder-oriented, step-by-step defense architecture corrects harmful queries directly rather than rejecting them outright. We introduce speculative decoding to enhance usability and facilitate deployment to boost secure decoding speed. Extensive experiments demonstrate that our approach improves model security without compromising reasoning speed. Notably, our method leverages the model's ability to discern hazardous information, maintaining its helpfulness compared to existing methods.