Recent development of the fifth-generation (5G) of cellular networks has led to their deployment worldwide. As part of the implementation, one of the challenges that must be addressed is the skip-zone problem, which occurs when objects obstruct the transmission of signals. A signal obstruction can significantly reduce the signal-to-noise ratio in radio frequency (RF) and indoor visible light communications (VLC) systems, whereas the obstruction can completely disrupt data transmission in free-space optical (FSO) systems. Therefore, the skip-zone dilemma must be resolved to ensure the efficient operation of 5G and beyond networks. In recent years, reconfigurable intelligent surfaces (RISs) that are more efficient than relays have become widely accepted as a method of mitigating skip-zones and providing reconfigurable radio environments. However, there have been limited studies on RISs for optical wireless communication (OWC) systems. This paper aims to provide a comprehensive tutorial on indoor VLC systems utilizing RISs technology. The article discusses the basics of VLC and RISs and reintroduces RISs for OWC systems, focusing on RIS-assisted indoor VLC systems. We also provide a comprehensive overview of optical RISs and examine the differences between optical RISs, RF-RISs, and optical relays. Furthermore, we discuss in detail how RISs can be used to overcome line-of-sight blockages and device orientation issue in VLC systems while revealing key challenges such as RIS element orientation design, RIS elements to access point/user assignment design, and RIS array positioning design problems that need to be studied. Moreover, we discuss and propose several research problems on integrating optical RISs with other emerging technologies and highlight other important research directions for RIS-assisted VLC systems.