Recently, studies have indicated that adversarial attacks pose a threat to deep learning systems. However, when there are only adversarial examples, people cannot get the original images, so there is research on reversible adversarial attacks. However, the existing strategies are aimed at invisible adversarial perturbation, and do not consider the case of locally visible adversarial perturbation. In this article, we generate reversible adversarial examples for local visual adversarial perturbation, and use reversible data embedding technology to embed the information needed to restore the original image into the adversarial examples to generate examples that are both adversarial and reversible. Experiments on ImageNet dataset show that our method can restore the original image losslessly while ensuring the attack capability.