The study of representations is of fundamental importance to any form of communication, and our ability to exploit them effectively is paramount. This article presents a novel theory -- Representational Systems Theory -- that is designed to abstractly encode a wide variety of representations from three core perspectives: syntax, entailment, and their properties. By introducing the concept of a construction space, we are able to encode each of these core components under a single, unifying paradigm. Using our Representational Systems Theory, it becomes possible to structurally transform representations in one system into representations in another. An intrinsic facet of our structural transformation technique is representation selection based on properties that representations possess, such as their relative cognitive effectiveness or structural complexity. A major theoretical barrier to providing general structural transformation techniques is a lack of terminating algorithms. Representational Systems Theory permits the derivation of partial transformations when no terminating algorithm can produce a full transformation. Since Representational Systems Theory provides a universal approach to encoding representational systems, a further key barrier is eliminated: the need to devise system-specific structural transformation algorithms, that are necessary when different systems adopt different formalisation approaches. Consequently, Representational Systems Theory is the first general framework that provides a unified approach to encoding representations, supports representation selection via structural transformations, and has the potential for widespread practical application.