Efforts have been made to make machines converse like humans in the past few decades. The recent techniques of Large Language Models (LLMs) make it possible to have human-like conversations with machines, but LLM's flaws of lacking understanding and reliability are well documented. We believe that the best way to eliminate this problem is to use LLMs only as parsers to translate text to knowledge and vice versa and carry out the conversation by reasoning over this knowledge using the answer set programming. I have been developing a framework based on LLMs and ASP to realize reliable chatbots that "understand" human conversation. This framework has been used to develop task-specific chatbots as well as socialbots. My future research is focused on making these chatbots scalable and trainable.