Federated Learning (FL) aims at unburdening the training of deep models by distributing computation across multiple devices (clients) while safeguarding data privacy. On top of that, Federated Continual Learning (FCL) also accounts for data distribution evolving over time, mirroring the dynamic nature of real-world environments. In this work, we shed light on the Incremental and Federated biases that naturally emerge in FCL. While the former is a known problem in Continual Learning, stemming from the prioritization of recently introduced classes, the latter (i.e., the bias towards local distributions) remains relatively unexplored. Our proposal constrains both biases in the last layer by efficiently fine-tuning a pre-trained backbone using learnable prompts, resulting in clients that produce less biased representations and more biased classifiers. Therefore, instead of solely relying on parameter aggregation, we also leverage generative prototypes to effectively balance the predictions of the global model. Our method improves on the current State Of The Art, providing an average increase of +7.9% in accuracy.