Self-supervised representation learning (SSRL) has improved the performance on downstream phoneme recognition versus supervised models. Training SSRL models requires a large amount of pre-training data and this poses a challenge for low resource languages. A common approach is transferring knowledge from other languages. Instead, we propose to use audio augmentation to pre-train SSRL models in a low resource condition and evaluate phoneme recognition as downstream task. We performed a systematic comparison of augmentation techniques, namely: pitch variation, noise addition, accented target-language speech and other language speech. We found combined augmentations (noise/pitch) was the best augmentation strategy outperforming accent and language knowledge transfer. We compared the performance with various quantities and types of pre-training data. We examined the scaling factor of augmented data to achieve equivalent performance to models pre-trained with target domain speech. Our findings suggest that for resource constrained languages, in-domain synthetic augmentation can outperform knowledge transfer from accented or other language speech.