The ability to understand spatial-temporal patterns for crowds of people is crucial for achieving long-term autonomy of mobile robots deployed in human environments. However, traditional historical data-driven memory models are inadequate for handling anomalies, resulting in poor reasoning by robot in estimating the crowd spatial distribution. In this article, a Receding Horizon Optimization (RHO) formulation is proposed that incorporates a Probability-related Partially Updated Memory (PPUM) for robot path planning in crowded environments with uncertainties. The PPUM acts as a memory layer that combines real-time sensor observations with historical knowledge using a weighted evidence fusion theory to improve robot's adaptivity to the dynamic environments. RHO then utilizes the PPUM as a informed knowledge to generate a path that minimizes the likelihood of encountering dense crowds while reducing the cost of local motion planning. The proposed approach provides an innovative solution to the problem of robot's long-term safe interaction with human in uncertain crowded environments. In simulation, the results demonstrate the superior performance of our approach compared to benchmark methods in terms of crowd distribution estimation accuracy, adaptability to anomalies and path planning efficiency.