The development of artificial intelligence systems with advanced reasoning capabilities represents a persistent and long-standing research question. Traditionally, the primary strategy to address this challenge involved the adoption of symbolic approaches, where knowledge was explicitly represented by means of symbols and explicitly programmed rules. However, with the advent of machine learning, there has been a paradigm shift towards systems that can autonomously learn from data, requiring minimal human guidance. In light of this shift, in latest years, there has been increasing interest and efforts at endowing neural networks with the ability to reason, bridging the gap between data-driven learning and logical reasoning. Within this context, Neural Algorithmic Reasoning (NAR) stands out as a promising research field, aiming to integrate the structured and rule-based reasoning of algorithms with the adaptive learning capabilities of neural networks, typically by tasking neural models to mimic classical algorithms. In this dissertation, we provide theoretical and practical contributions to this area of research. We explore the connections between neural networks and tropical algebra, deriving powerful architectures that are aligned with algorithm execution. Furthermore, we discuss and show the ability of such neural reasoners to learn and manipulate complex algorithmic and combinatorial optimization concepts, such as the principle of strong duality. Finally, in our empirical efforts, we validate the real-world utility of NAR networks across different practical scenarios. This includes tasks as diverse as planning problems, large-scale edge classification tasks and the learning of polynomial-time approximate algorithms for NP-hard combinatorial problems. Through this exploration, we aim to showcase the potential integrating algorithmic reasoning in machine learning models.