We explore an explicit link between stochastic gradient descent using common batching strategies and splitting methods for ordinary differential equations. From this perspective, we introduce a new minibatching strategy (called Symmetric Minibatching Strategy) for stochastic gradient optimisation which shows greatly reduced stochastic gradient bias (from $\mathcal{O}(h^2)$ to $\mathcal{O}(h^4)$ in the optimiser stepsize $h$), when combined with momentum-based optimisers. We justify why momentum is needed to obtain the improved performance using the theory of backward analysis for splitting integrators and provide a detailed analytic computation of the stochastic gradient bias on a simple example. Further, we provide improved convergence guarantees for this new minibatching strategy using Lyapunov techniques that show reduced stochastic gradient bias for a fixed stepsize (or learning rate) over the class of strongly-convex and smooth objective functions. Via the same techniques we also improve the known results for the Random Reshuffling strategy for stochastic gradient descent methods with momentum. We argue that this also leads to a faster convergence rate when considering a decreasing stepsize schedule. Both the reduced bias and efficacy of decreasing stepsizes are demonstrated numerically on several motivating examples.