Convolutional Neural Networks (CNN) are used mainly to treat problems with many images characteristic of Deep Learning. In this work, we propose a hybrid image classification model to take advantage of quantum and classical computing. The method will use the potential that convolutional networks have shown in artificial intelligence by replacing classical filters with variational quantum filters. Similarly, this work will compare with other classification methods and the system's execution on different servers. The algorithm's quantum feasibility is modelled and tested on Amazon Braket Notebook instances and experimented on the Pennylane's philosophy and framework.