Quantum computers have the potential to provide exponential speedups over their classical counterparts. Quantum principles are being applied to fields such as communications, information processing, and artificial intelligence to achieve quantum advantage. However, quantum bits are extremely noisy and prone to decoherence. Thus, keeping the qubits error free is extremely important toward reliable quantum computing. Quantum error correcting codes have been studied for several decades and methods have been proposed to import classical error correcting codes to the quantum domain. However, circuits for such encoders and decoders haven't been explored in depth. This paper serves as a tutorial on designing and simulating quantum encoder and decoder circuits for stabilizer codes. We present encoding and decoding circuits for five-qubit code and Steane code, along with verification of these circuits using IBM Qiskit. We also provide nearest neighbour compliant encoder and decoder circuits for the five-qubit code.