We consider the conjecture proposed in Matsumoto, Zhang and Schiebinger (2022) suggesting that optimal transport with quadratic regularisation can be used to construct a graph whose discrete Laplace operator converges to the Laplace--Beltrami operator. We derive first order optimal potentials for the problem under consideration and find that the resulting solutions exhibit a surprising resemblance to the well-known Barenblatt--Prattle solution of the porous medium equation. Then, relying on these first order optimal potentials, we derive the pointwise $L^2$-limit of such discrete operators built from an i.i.d. random sample on a smooth compact manifold. Simulation results complementing the limiting distribution results are also presented.