Emerging systems such as Internet-of-things (IoT) and machine-to-machine (M2M) communications have strict requirements on the power consumption of used equipments and associated complexity in the transceiver design. As a result, multiple-input multiple-output (MIMO) solutions might not be directly suitable for these system due to their high complexity, inter-antenna synchronization (IAS) requirement, and high inter-antenna interference (IAI) problems. In order to overcome these problems, we propose two novel index modulation (IM) schemes, namely pulse index modulation (PIM) and generalized PIM (GPIM) for single-input single-output (SISO) schemes. The proposed models use well-localized and orthogonal Hermite-Gaussian pulses for data transmission and provide high spectral efficiency owing to the Hermite-Gaussian pulse indices. Besides, it has been shown via analytical derivations and computer simulations that the proposed PIM and GPIM systems have better error performance and considerable signal-to-noise ratio (SNR) gain compared to existing spatial modulation (SM), quadrature SM (QSM), and traditional M-ary systems.