Pretraining is a common technique in deep learning for increasing performance and reducing training time, with promising experimental results in deep reinforcement learning (RL). However, pretraining requires a relevant dataset for training. In this work, we evaluate the effectiveness of pretraining for RL tasks, with and without distracting backgrounds, using both large, publicly available datasets with minimal relevance, as well as case-by-case generated datasets labeled via self-supervision. Results suggest filters learned during training on less relevant datasets render pretraining ineffective, while filters learned during training on the in-distribution datasets reliably reduce RL training time and improve performance after 80k RL training steps. We further investigate, given a limited number of environment steps, how to optimally divide the available steps into pretraining and RL training to maximize RL performance. Our code is available on GitHub