Chaotic signals offer promising characteristics for wireless communications due to their wideband nature, low cross-correlation, and sensitivity to initial conditions. Although classical chaotic modulation schemes like Chaos Shift Keying (CSK) can theoretically match the performance of traditional modulation techniques (i.e., bit error rate), practical challenges, such as the difficulty in generating accurate signal replicas at the receiver, limit their effectiveness. Besides, chaotic signals are often considered unpredictable despite their deterministic nature. In this paper, we challenge this view by introducing a novel modulation scheme for chaotic communications that leverages the deterministic behavior of chaotic signals. The proposed approach eliminates the need for synchronized replicas of transmitted waveforms at the receiver. Moreover, to enhance noise robustness, we employ M-ary Frequency Shift Keying (FSK) modulation on the chaotic samples. Experimental results show that the proposed scheme significantly outperforms CSK when perfect replicas are unavailable, with the best performance achieved for low-order modulations, and resulting in minimal delay increase.