In the last decade there has been a resurgence of interest in Frank-Wolfe (FW) style methods for optimizing a smooth convex function over a polytope. Examples of recently developed techniques include {\em Decomposition-invariant Conditional Gradient} (DiCG), {\em Blended Condition Gradient} (BCG), and {\em Frank-Wolfe with in-face directions} (IF-FW) methods. We introduce two extensions of these techniques. First, we augment DiCG with the {\em working set} strategy, and show how to optimize over the working set using {\em shadow simplex steps}. Second, we generalize in-face Frank-Wolfe directions to polytopes in which faces cannot be efficiently computed, and also describe a generic recursive procedure that can be used in conjunction with several FW-style techniques. Experimental results indicate that these extensions are capable of speeding up original algorithms by orders of magnitude for certain applications.