This paper studies an integrated network design that boosts system capacity through cooperation between wireless access points (APs) and a satellite. By coherently combing the signals received by the central processing unit from the users through the space and terrestrial links, we mathematically derive an achievable throughput expression for the uplink (UL) data transmission over spatially correlated Rician channels. A closed-form expression is obtained when maximum ratio combining is employed to detect the desired signals. We formulate the max-min fairness and total transmit power optimization problems relying on the channel statistics to perform power allocation. The solution of each optimization problem is derived in form of a low-complexity iterative design, in which each data power variable is updated based on a closed-form expression. The mathematical analysis is validated with numerical results showing the added benefits of considering a satellite link in terms of improving the ergodic data throughput.