High-altitude platform station (HAPS) systems are considered to have great promise in the multi-tier architecture of the sixth generation (6G) and beyond wireless networks. A HAPS system can be used as a super macro base station (SMBS) to communicate with users directly since there is a significant line-of-sight (LoS) link between a HAPS and terrestrial users. One of the problems that HAPS SMBS systems face, however, is the high spatial correlation between the channel gain of adjacent users, which is due to the LoS link between the HAPS and terrestrial users. In this paper, in addition to utilizing the spatial correlation of channel gain between multiple users to improve user services, we consider correlated channel gain for each user. In the proposed method, terrestrial users with a high spatial correlation between their LoS channel gain are grouped into NOMA clusters. Next, an algorithm is proposed to allocate power among terrestrial users to maximize the total rate while satisfying the quality-of-service (QoS) and successive interference cancellation (SIC) conditions. Simulation results show that a HAPS SMBS has superior data rate and energy efficiency in comparison to a terrestrial BS.