Quantum computing has the potential to provide substantial computational advantages over current state-of-the-art classical supercomputers. However, current hardware is not advanced enough to execute fault-tolerant quantum algorithms. An alternative of using hybrid quantum-classical computing with variational algorithms can exhibit barren plateau issues, causing slow convergence of gradient-based optimization techniques. In this paper, we discuss "post-variational strategies", which shift tunable parameters from the quantum computer to the classical computer, opting for ensemble strategies when optimizing quantum models. We discuss various strategies and design principles for constructing individual quantum circuits, where the resulting ensembles can be optimized with convex programming. Further, we discuss architectural designs of post-variational quantum neural networks and analyze the propagation of estimation errors throughout such neural networks. Lastly, we show that our algorithm can be applied to real-world applications such as image classification on handwritten digits, producing a 96% classification accuracy.