In this work, we consider the convergence of Polyak's heavy ball method, both in continuous and discrete time, on a non-convex objective function. We recover the convergence rates derived in [Polyak, U.S.S.R. Comput. Math. and Math. Phys., 1964] for strongly convex objective functions, assuming only validity of the Polyak-Lojasiewicz inequality. In continuous time our result holds for all initializations, whereas in the discrete time setting we conduct a local analysis around the global minima. Our results demonstrate that the heavy ball method does, in fact, accelerate on the class of objective functions satisfying the Polyak-Lojasiewicz inequality. This holds even in the discrete time setting, provided the method reaches a neighborhood of the global minima. Instead of the usually employed Lyapunov-type arguments, our approach leverages a new differential geometric perspective of the Polyak-Lojasiewicz inequality proposed in [Rebjock and Boumal, Math. Program., 2024].